
Announcements

Remember:        First exam is next Wednesday!

I will post links to practice problems and exams shortly.
See announcements for possible extra hours etc. 

I will not be here Friday. But I will be in during select hours 
on the weekend and next week.



The elements of change

What makes a reaction spontaneous?

What makes a reaction actually happen?

Enthalpy Entropy

Free energy

Molecular Detail, Transport and Kinetics!

+
H°298(A) H°298(C)H°298(B)

∆H= H(B)+H(C)-H(A)

∆S>0



The elements of change

We know from last time that

∆H <0 exothermic reaction (combustion)
∆H =0 thermoneutral reaction (ideal gas expansion into a vacuum)
∆H >0 endothermic reaction (ice melting at 25°C)

We tend to think that processes which decrease energy occur spontaneously.

But what about endothermic reactions?

Something’s missing!



What will make a steam 
engine go?

How much of the heat put in 
at high temperature can be 
converted to work?

Can two engines with the 
same temperature difference 
drive one another?

What does entropy have to 
do with it?

Murphy’s law and the heat 
death of the universe!

Clausius
b. Jan. 2, 1822, Prussia
d. Aug. 24, 1888, Bonn

"Heat cannot of itself 
pass from a colder to a 
hotter body." 



The Carnot Cycle
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w= -nRThotln(V2/V1)
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The Carnot Cycle: Engine Schematic



The Carnot Cycle: Engine Schematic



The Carnot Cycle: Another diagram

Thot

Tcold

E

The engine operates between two reservoirs to and from which heat can be 
transferred.

We put heat into the system from the hot reservoir and heat is expelled into the cold 
reservoir.



The Carnot Cycle: Step 1

State 1
Thot
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Thot
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Isothermal reversible Expansion:

∆E=0 Energy of an ideal gas depends only on temperature
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The Carnot Cycle: Step 2
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The Carnot Cycle: Step 3&4
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The Carnot Cycle: Summary
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Step1 Step2 Step3 Step4

w -nRThotln(V2/V1) -CV ∆T -nRTcoldln(V4/V3) CV ∆T

q -w 0 -w 0

∆E 0 w 0 w

w1  +  w2  +  w3  +  w4= -nRThotln(V2/V1)   - nRTcoldln(V4/V3)

q1  +  q2  +  q3  +  q4= nRThotln(V2/V1)  +  nRTcoldln(V4/V3)

q  =  -w
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The Carnot Cycle: PV Work Diagram



The Carnot Cycle: Efficiency

The efficiency of a heat engine is simply 

total work accomplished/total fuel (heat) input

The heat is input only from the hot reservoir so

efficiency= εεεε= -w/qhot

So we get two expressions for efficiency:

1) εεεε =  (qhot  +  qcold)/qho =  1  +  qcold/qhot

and

2) εεεε= 1 + nRTcoldln(V4/V3) / nRThotln(V2/V1)= 1+(Tcold/Thot)(ln(V4/V3)/ln(V2/V1))
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εεεε= 1 + nRTcoldln(V4/V3) / nRThotln(V2/V1)= 1+(Tcold/Thot)(ln(V4/V3)/ln(V2/V1))

Well, this second expression is rather complicated-- but we have a relationship for the 
volumes in this process:

εεεε= 1 - (Tcold/Thot)

Rearranging and plugging it in to the first equation on the page:



εεεε = 1 - (Tcold/Thot)  =  1  +  (qcold/qhot)

100% efficiency is only achieved when 

Tcold=0 and Thot=∞

Practical impossibilities. (Foreshadowing the Third Law)

Can we construct an engine more efficient than this one?



Impossible Machines
Consider two engines ER and E’ operating between the same two reservoirs:

Thot

Tcold

ER E’

Can the efficiencies of these two 
engines be different?

Can the efficiencies of these two 
engines be different?

We operate ER in reverse.
We couple the operation of the two engines.

We know:

wR= qhot + qcold (forward direction)
w’= q’hot + q’cold

The composite engine then has a total work

W= w’-wR

Let’s composite the engines so that there is no work on the surroundings:
w’ = wR which implies qhot- q’hot = -(qcold + q’cold)



Impossible Machines

Can the efficiencies of these two engines be different?Can the efficiencies of these two engines be different?

Let’s assume εεεε’> εεεεR: w’/q’hot>wR/qhot

But w’=wR so q’hot<  qhot

In other words, the heat withdrawn from the hot reservoir is negative! 

From above, we also so that this implies that the heat withdrawn from cold 
reservoir is positive!

Without doing any work we extract heat from the cold reservoir and place it in 
the hot reservoir!

What was our error?



The Carnot Cycle: Noticing state functions

Assumptions in our proof:

1) The first law: Experimentally proven.
2) w’=wR A fully practical assumption

3) εεεε’> εεεεR Hmmmmmm.

That was a bad one…so εεεε’≤≤≤≤ εεεεR

Now we assumed that E’ was any engine, whereas, ER was reversible.

So every engine is either of equal or less efficiency than a reversible engine

(For the same two reservoirs)



The Carnot Cycle: Noticing state functions

εεεε = 1 - (Tcold/Thot)  =  1  +  (qcold/qhot)

Now--- we have this interesting relationship between temperature and heat for 
these systems:

What Carnot noticed was that there was an implied state function here!

(qhot/Thot)  =  -(qcold/Tcold)
or

(qhot/Thot)  + (qcold/Tcold)  = 0

This can also be written:

0=∫rev
rev

dT
dq

This is a state function! Clausius called it the Entropy, S.



Non-Conservation of Entropy

The question arose, is entropy conserved? After all, energy is.

But a great deal of experience indicated that:

∆S(system) + ∆S(surroundings) ≥ 0

This is the Second Law of Thermodynamics.

•Heat never spontaneously flows from a cold body to a hot one.
•A cyclic process can never remove heat from a hot body and achieve complete 
conversion into work

Let’s consider a particular case.



Non-Conservation of Entropy

Vacuum
2 Atm

T
V1

1Atm
T

1 Atm
T

V2=2V1

Two cases of expansion of an ideal gas: 

1) Expansion in to a vacuum.
2) Reversible expansion

(1) w=0, ∆E=0, qirreversible=0 ∆S(surroundings)=0

To calculate ∆S(system) we look to the second process (they must be the same).



Non-Conservation of Entropy

In the second process we follow an isothermal, reversible path.

We know that ∆E=0 and

Now…qrev= ∆E-w= RT ln(2) so

∆S(system)= qrev/T= R ln(2)

Thus for the total irreversible process

∆S= 0 + R ln(2) > 0
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Non-Conservation of Entropy

For the reversible process we’ve already calculated

qrev= RT ln(2) 
∆S(system)= qrev/T= R ln(2)

Since the process is reversible-- all the heat must be transferred from the 
surroundings. 

One way to make sure this is reversible is to make sure the outside temperature is 
only differentially hotter.

∆S(surroundings)= -qrev/T 

∆S(total)= 0



Disorder and the relationship to entropy

Ludwig Boltzmann
c. 1875

It turns out that disorder and entropy are intimately related.

We start out by considering the spontaneity of this process.

Why doesn’t the gas spontaneously reappear back in the box?



*

Let’s break the box into N cells and consider the gas to be 
an ideal gas composed of M molecules. 

We ask: What is the probability that M molecules will be in 
the box labeled ‘*’

This obviously depends on both M and N. We assume N>M for this problem. 

Number of ways of distributing M indistinguishable balls in N boxes is simply:

Ω= NM/M!

Boltzmann noted that an entropy could be defined as 

S= k ln(Ω)= R ln(Ω)/NA

There are a number of reasons this is a good definition. One is it connects to 
thermodynamics.

Disorder and the relationship to entropy



Disorder and the relationship to entropy

So for a given state we have

S = k ln(Ω) = R ln(Ω)/NA = R ln(NM/M!)/NA

Let’s say we change state by increasing the volume. Well, for the same sized 
cells, N increases to N’.

S’-S = (R/NA) (ln(N’M/M!) - ln(NM/M!))
= (R/NA)  ln(N’M /NM)

So
∆S= (R/NA) ln(N’M/NM) = M (R/NA) ln(N’/N)

And since N is proportional to volume:

∆S = M (R/NA) ln(V2/V1)



Entropy of Materials

Diamond
S°298= 2.4 J/K

Graphite
S°298= 5.7 J/K

How about water in its different phases:

S°298 (J/K mol)

H2O(s,ice) 44.3 
H2O(l) 69.91 
H2O(g) 188.72

Why does graphite have more 
entropy than diamond?



Entropy and Mixing

What happens when you mix two 
ideal gases?

What happens when you solvate 
a molecule?



Entropy and Chemical Reactions

CO3
2- (aq) + H+(aq) HCO3

- (aq) 148.1 J/K mol

HC2O4
- (aq) + OH- (aq) C2O4

2- + H2O(l) -23.1 

∆S

Its hard to predict the change in entropy without considering solvent effects

Calculation of ∆S for a reaction is similar to that for enthalpy. 

Entropies of elements are not zero though.



Fluctuations

All the previous arguments relate to processes 
involving large numbers of  molecules averages over 
long periods of time.

When the system is small and observation time is short, 
then fluctuations around the “maximum” entropy 
solution can be found.



Homework:  For Next WEEK!

1-3) TSW 3.1, 3.3, 3.7

4) Sketch all possible arrangements of
a) Two balls in six cells
b) Four balls in six cells
c) For each of A and B, what is the probability that half the balls will be 

in the first three cells and half in the second three?
Assume the balls are indistinguishable and the cells may contain only one ball.

This is an early announcement for the homework for Monday. It might be changed 
slightly. But its good practice for the exam.


